On local spectral radius

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

On graphs whose spectral radius

The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.

متن کامل

On the joint spectral radius

We prove the `p-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of [6], [7] and [10]. Let A be a Banach algebra with the unit element denoted by 1. Let a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte spectrum of a, i.e. λ = (λ1, . . . , λn) / ∈ σ(a) if and only if there exist u1, . . . , un, v1, . . . , vn ∈ A suc...

متن کامل

Real Paley–wiener Theorems and Local Spectral Radius Formulas

We systematically develop real Paley–Wiener theory for the Fourier transform on Rd for Schwartz functions, Lp-functions and distributions, in an elementary treatment based on the inversion theorem. As an application, we show how versions of classical Paley–Wiener theorems can be derived from the real ones via an approach which does not involve domain shifting and which may be put to good use fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1987

ISSN: 0528-2195

DOI: 10.21136/cpm.1987.118306